Most groups are hyperbolic, or ... most groups are trivial?

Enric Ventura
Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Seminari Grafs, Barcelona

March 18th, 2010.
Outline

1. A claim due to Gromov
2. Arzhantseva-Ol’shanskii’s proof
3. A new point of view
4. Stallings’ graphs
5. Counting Stallings’ graphs: partial injections
6. Most groups are trivial
7. Proof of the combinatorial theorem
1. A claim due to Gromov
2. Arzhantseva-Ol’shanskii’s proof
3. A new point of view
4. Stallings’ graphs
5. Counting Stallings’ graphs: partial injections
6. Most groups are trivial
7. Proof of the combinatorial theorem
Gromov’s claim

Claim (Gromov ’87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: “Essays in group theory”, 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of “most” is not precise,
- statement made precise and proved, later by other authors.
Gromov’s claim

Claim (Gromov ’87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: “Essays in group theory”, 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of “most” is not precise,
- statement made precise and proved, later by other authors.
Gromov’s claim

Claim (Gromov ’87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: “Essays in group theory”, 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of “most” is not precise,
- statement made precise and proved, later by other authors.
Gromov’s claim

Claim (Gromov ’87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: “Essays in group theory”, 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of “most” is not precise,
- statement made precise and proved, later by other authors.
Gromov’s claim

Claim (Gromov ’87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of “most” is not precise,
- statement made precise and proved, later by other authors.
Presentations of groups

Notation

- $A = \{a_1, \ldots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_k, a_k^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A: $|1| = 0$, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \leq |u| + |v|$.
- The free group F_A is usually denoted by:

$$F_A = \langle a_1, \ldots, a_r \mid \rangle.$$
Presentations of groups

Notation

- $A = \{a_1, \ldots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_k, a_k^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A:
 - $|1| = 0$, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \leq |u| + |v|$.
- The free group F_A is usually denoted by:
 $$F_A = \langle a_1, \ldots, a_r | \sim \rangle.$$
Presentations of groups

Notation

- \(A = \{a_1, \ldots, a_k\} \) is a finite alphabet (\(n \) letters).
- \(A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_k, a_k^{-1}\} \).
- Usually, \(A = \{a, b, c\} \).
- \((A^{\pm 1})^* \) the free monoid on \(A^{\pm 1} \) (words on \(A^{\pm 1} \)).
- \(F_A = (A^{\pm 1})^*/\sim \) is the free group on \(A \) (words on \(A^{\pm 1} \) modulo reduction).
- Every \(w \in A^* \) has a unique reduced form,
- 1 denotes the empty word, and \(|·|\) the (shortest) length in \(F_A \):
 - \(|1| = 0\), \(|aba^{-1}| = |abbb^{-1}a^{-1}| = 3\), \(|uv| \leq |u| + |v|\).
- The free group \(F_A \) is usually denoted by:

\[
F_A = \langle a_1, \ldots, a_r | - \rangle.
\]
A = \{a_1, \ldots, a_k\} is a finite alphabet (n letters).

A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_k, a_k^{-1}\}.

Usually, A = \{a, b, c\}.

(A^{\pm 1})^* \text{ the free monoid on } A^{\pm 1} (\text{words on } A^{\pm 1}).

F_A = (A^{\pm 1})^*/\sim \text{ is the free group on } A (\text{words on } A^{\pm 1} \text{ modulo reduction}).

Every w \in A^* has a unique reduced form,

1 denotes the empty word, and |·| the (shortest) length in F_A:

|1| = 0, \quad |aba^{-1}| = |abbb^{-1}a^{-1}| = 3, \quad |uv| \leq |u| + |v|.

The free group F_A is usually denoted by:

F_A = \langle a_1, \ldots, a_r | - \rangle.
Notation

- \(A = \{ a_1, \ldots, a_k \} \) is a finite alphabet (\(n \) letters).
- \(A^{\pm 1} = A \cup A^{-1} = \{ a_1, a_1^{-1}, \ldots, a_k, a_k^{-1} \} \).
- Usually, \(A = \{ a, b, c \} \).
- \((A^{\pm 1})^* \) the free monoid on \(A^{\pm 1} \) (words on \(A^{\pm 1} \)).
- \(F_A = (A^{\pm 1})^*/\sim \) is the free group on \(A \) (words on \(A^{\pm 1} \) modulo reduction).
- Every \(w \in A^* \) has a unique reduced form,
- \(1 \) denotes the empty word, and \(| \cdot | \) the (shortest) length in \(F_A \):
 - \(|1| = 0 \), \(|aba^{-1}| = |abbb^{-1}a^{-1}| = 3 \), \(|uv| \leq |u| + |v| \).
- The free group \(F_A \) is usually denoted by:

\[
F_A = \langle a_1, \ldots, a_r \mid - \rangle.
\]
Presentations of groups

Notation

- $A = \{a_1, \ldots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_k, a_k^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A:
 - $|1| = 0$, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \leq |u| + |v|$.
- The free group F_A is usually denoted by:
 $$F_A = \langle a_1, \ldots, a_r | - \rangle.$$
Presentations of groups

Notation

- $A = \{a_1, \ldots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_k, a_k^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A:
 - $|1| = 0$, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \leq |u| + |v|$.
- The free group F_A is usually denoted by:
 $$F_A = \langle a_1, \ldots, a_r | - \rangle.$$
Presentations of groups

Notation

1. $A = \{a_1, \ldots, a_k\}$ is a finite alphabet (n letters).
2. $A^\pm = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_k, a_k^{-1}\}$.
3. Usually, $A = \{a, b, c\}$.
4. $(A^\pm)^*$ the free monoid on A^\pm (words on A^\pm).
5. $F_A = (A^\pm)^*/\sim$ is the free group on A (words on A^\pm modulo reduction).
6. Every $w \in A^*$ has a unique reduced form,
7. 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A:

$$|1| = 0, \quad |aba^{-1}| = |abbb^{-1}a^{-1}| = 3, \quad |uv| \leq |u| + |v|.$$

8. The free group F_A is usually denoted by:

$$F_A = \langle a_1, \ldots, a_r \mid \rangle.$$
Every finitely generated group G is a quotient of F_A (for some r), i.e.

$$G \cong F_A/N = \langle a_1, \ldots, a_r \mid w_1, w_2, \ldots \rangle,$$

where N is the normal closure of $w_1, w_2, \ldots \in F_A$ in F_A.

- If G admits a presentation with finitely many w_i's (relations) we say it is **finitely presented**.
- Very different presentations can give isomorphic groups:

$$\langle a \mid a \rangle = 1 = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$$

- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.
Every finitely generated group \(G \) is a quotient of \(F_A \) (for some \(r \)), i.e.

\[
G \cong F_A/N = \langle a_1, \ldots, a_r \mid w_1, w_2, \ldots \rangle,
\]

where \(N \) is the normal closure of \(w_1, w_2, \ldots \in F_A \) in \(F_A \).

- If \(G \) admits a presentation with finitely many \(w_i \)'s (relations) we say it is \textit{finitely presented}.
- Very different presentations can give isomorphic groups:

\[
\langle a \mid a \rangle = 1 = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle
\]

- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.
Presentations of groups

Theorem

Every finitely generated group \(G \) *is a quotient of* \(F_A \) *for some* \(r \), *i.e.*

\[
G \cong F_A / N = \langle a_1, \ldots, a_r \mid w_1, w_2, \ldots \rangle,
\]

where \(N \) *is the normal closure of* \(w_1, w_2, \ldots \in F_A \) *in* \(F_A \).

- If \(G \) admits a presentation with finitely many \(w_i \)'s (*relations*) we say it is **finitely presented**.
- Very different presentations can give *isomorphic* groups:

\[
\langle a \mid a \rangle = 1 = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle
\]

- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.
Presentations of groups

Theorem

Every finitely generated group G *is a quotient of* F_A *(for some* r), *i.e.*

$$G \cong F_A / N = \langle a_1, \ldots, a_r \mid w_1, w_2, \ldots \rangle,$$

where N *is the normal closure of* $w_1, w_2, \ldots \in F_A$ *in* F_A.

- If G admits a presentation with finitely many w_i’s (*relations*) we say it is **finitely presented**.
- Very different presentations can give isomorphic groups:

$$\langle a \mid a \rangle = 1 = \langle a, b \mid a^{-1} ba = b^2, b^{-1} ab = a^2 \rangle$$

- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.

Enric Ventura (UPC)

Most groups are hyperbolic... or trivial ?

March 18th, 2010 6 / 53
Presentations of groups

Theorem

Every finitely generated group G *is a quotient of* F_A *for some* r, *i.e.*

$$G \cong F_A/N = \langle a_1, \ldots, a_r | w_1, w_2, \ldots \rangle,$$

where N is the normal closure of $w_1, w_2, \ldots \in F_A$ in F_A.

- If G admits a presentation with finitely many w_i’s (*relations*) we say it is *finitely presented*.
- Very different presentations can give isomorphic groups:

 $$\langle a | a \rangle = 1 = \langle a, b | a^{-1} ba = b^2, b^{-1} ab = a^2 \rangle$$

- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.
Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition

A group G is δ-hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are “close” to free groups (in a geometric sense).
Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition

A group G is δ-hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are “close” to free groups (in a geometric sense).
Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition

A group G is δ-hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are “close” to free groups (in a geometric sense).
Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition

A group G is δ-hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are “close” to free groups (in a geometric sense).
Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition

A group G is δ-hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are “close” to free groups (in a geometric sense).
Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition

A group G is δ-hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are “close” to free groups (in a geometric sense).
The meaning of “most”

Let \(X \) be an infinite set. What is the meaning of sentences like “most elements in \(X \) have property \(\mathcal{P} \)”?

- Define a notion of size, \(|\cdot| : X \rightarrow \mathbb{N} \), with finite preimages.
- Define the balls: \(B(n) = \{x \in X \mid |x| \leq n\} \) (which are finite).
- Count the proportion \(\rho_n = \frac{|\{x \in X \mid x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|} \).
- Define the density of \(X \) as \(\rho = \lim_{n \to \infty} \rho_n \in [0, 1] \) if it exists.
- \(\mathcal{P} \) is generic (or generically many elements satisfy \(\mathcal{P} \)) if \(\rho = 1 \).
- \(\mathcal{P} \) is negligible if \(\rho = 0 \).

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside \(X \).
Let X be an infinite set. What is the meaning of sentences like “most elements in X have property P”?

- Define a notion of size, $|·| : X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{ x \in X \mid |x| \leq n \}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{ x \in X \mid x \text{ satisfies } P \}|}{|B(n)|} = \frac{|P \cap B(n)|}{|B(n)|}$.
- Define the density of X as $\rho = \lim_{n \to \infty} \rho_n \in [0, 1]$ if it exists.
- P is generic (or generically many elements satisfy P) if $\rho = 1$.
- P is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.
Let \(X \) be an infinite set. What is the meaning of sentences like “most elements in \(X \) have property \(P \)”?

- Define a notion of size, \(|\cdot| : X \to \mathbb{N} \), with finite preimages.
- Define the balls: \(B(n) = \{ x \in X \mid |x| \leq n \} \) (which are finite).
- Count the proportion \(\rho_n = \frac{|\{x \in X \mid x \text{ satisfies } P\}|}{|B(n)|} = \frac{|P \cap B(n)|}{|B(n)|} \).
- Define the density of \(X \) as \(\rho = \lim_{n \to \infty} \rho_n \) (\(\in [0, 1] \) if it exists).
- \(P \) is generic (or generically many elements satisfy \(P \)) if \(\rho = 1 \).
- \(P \) is negligible if \(\rho = 0 \).

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside \(X \).
The meaning of “most”

Let X be an infinite set. What is the meaning of sentences like “most elements in X have property \mathcal{P}”?

- Define a notion of size, $|\cdot|: X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{ x \in X \mid |x| \leq n \}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{ x \in X \mid x \text{ satisfies } \mathcal{P} \}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of X as $\rho = \lim_{n \to \infty} \rho_n \in [0, 1]$ if it exists.
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.
The meaning of “most”

Let X be an infinite set. What is the meaning of sentences like “most elements in X have property \mathcal{P}”?

- Define a notion of size, $|\cdot| : X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{x \in X \mid |x| \leq n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in X \mid x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of X as $\rho = \lim_{n \to \infty} \rho_n$ ($\in [0, 1]$ if it exists).

- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.
Let X be an infinite set. What is the meaning of sentences like “most elements in X have property \mathcal{P}”?

- Define a notion of **size**, $|\cdot| : X \rightarrow \mathbb{N}$, with finite preimages.
- Define the **balls**: $B(n) = \{x \in X \mid |x| \leq n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in X \mid x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the **density** of X as $\rho = \lim_{n \to \infty} \rho_n \in [0, 1]$ if it exists.
- \mathcal{P} is **generic** (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is **negligible** if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.
Let X be an infinite set. What is the meaning of sentences like “most elements in X have property \mathcal{P}”?

- Define a notion of **size**, $|\cdot| : X \to \mathbb{N}$, with finite preimages.
- Define the **balls**: $B(n) = \{x \in X \mid |x| \leq n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in X \mid x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the **density** of X as $\rho = \lim_{n \to \infty} \rho_n \in [0,1]$ if it exists.
- \mathcal{P} is **generic** (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is **negligible** if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.
Let X be an infinite set. What is the meaning of sentences like “most elements in X have property \mathcal{P}”?

- Define a notion of **size**, $\cdot : X \to \mathbb{N}$, with finite preimages.
- Define the **balls**: $B(n) = \{x \in X \mid |x| \leq n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in X \mid x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the **density** of X as $\rho = \lim_{n \to \infty} \rho_n \in [0, 1]$ if it exists.
- \mathcal{P} is **generic** (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is **negligible** if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.
Definition

A point \((x_1, \ldots, x_k) \in \mathbb{Z}^k \) is **visible** if \(\gcd(x_1, \ldots, x_k) = 1 \).

Theorem (Mertens, 1874 (case \(k = 2 \))

The density of visible points in \(\mathbb{Z}^k \) is \(1/\zeta(k) \), where \(\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k} \) is the Riemann zeta-function (with respect to \(||\cdot||_1 \)).

In particular, visible points in the plane have density \(\frac{6}{\pi^2} \).

With artificial definitions of size, one can force it to be any \(\alpha \in [0, 1] \).
Classical example: visible points

Definition

A point \((x_1, \ldots, x_k) \in \mathbb{Z}^k\) is visible if \(\gcd(x_1, \ldots, x_k) = 1\).

Theorem (Mertens, 1874 (case \(k = 2\)))

The density of visible points in \(\mathbb{Z}^k\) is \(1/\zeta(k)\), where \(\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}\) is the Riemann zeta-function (with respect to \(\|\cdot\|_1\)).

In particular, visible points in the plane have density \(\frac{6}{\pi^2}\).

With artificial definitions of size, one can force it to be any \(\alpha \in [0, 1]\).
Classical example: visible points

Definition

A point \((x_1, \ldots, x_k) \in \mathbb{Z}^k\) is visible if \(\gcd(x_1, \ldots, x_k) = 1\).

Theorem (Mertens, 1874 (case \(k = 2\))

The density of visible points in \(\mathbb{Z}^k\) is \(1/\zeta(k)\), where \(\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}\) is the Riemann zeta-function (with respect to \(\|\cdot\|_1\)).

In particular, visible points in the plane have density \(\frac{6}{\pi^2}\).

With artificial definitions of size, one can force it to be any \(\alpha \in [0, 1]\).
Classical example: visible points

Definition

A point \((x_1, \ldots, x_k) \in \mathbb{Z}^k \) is visible if \(\gcd(x_1, \ldots, x_k) = 1 \).

Theorem (Mertens, 1874 (case \(k = 2 \)))

The density of visible points in \(\mathbb{Z}^k \) is \(1/\zeta(k) \), where \(\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k} \) is the Riemann zeta-function (with respect to \(|| \cdot ||_1 \)).

In particular, visible points in the plane have density \(\frac{6}{\pi^2} \).

With artificial definitions of size, one can force it to be any \(\alpha \in [0, 1] \).
Outline

1. A claim due to Gromov
2. Arzhantseva-Ol’shanskii’s proof
3. A new point of view
4. Stallings’ graphs
5. Counting Stallings’ graphs: partial injections
6. Most groups are trivial
7. Proof of the combinatorial theorem
Arzhantseva-Ol’shanskii’s proof

- Fix $r \geq 2$ and $k \geq 1$.
- Consider the free group $F_A = \langle a_1, \ldots, a_r \mid - \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, \ldots, w_k \in F_A$, let $G_{w_1,\ldots,w_k} = \langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle$.

Theorem (Arzhantseva-Ol’shanskii, ’96)

$$\exists \lim_{n \to \infty} \frac{|\{(w_1, \ldots, w_k) \in B(n)^k \mid G_{w_1,\ldots,w_k} \text{ is infinite hyperbolic}\}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.
Arzhantseva-Ol’shanskii’s proof

- Fix $r \geq 2$ and $k \geq 1$.
- Consider the free group $F_A = \langle a_1, \ldots, a_r \mid - \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, \ldots, w_k \in F_A$, let $G_{w_1, \ldots, w_k} = \langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle$.

Theorem (Arzhantseva-Ol’shanskii, ’96)

$$\exists \lim_{n \to \infty} \frac{|\{(w_1, \ldots, w_k) \in B(n)^k \mid G_{w_1, \ldots, w_k} \text{ is infinite hyperbolic}\}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.
Arzhantseva-Ol’shanskii’s proof

- Fix \(r \geq 2 \) and \(k \geq 1 \).
- Consider the free group \(F_A = \langle a_1, \ldots, a_r \mid - \rangle \).
- In \(F_A \) we have the natural notion of size and balls.
- For \(w_1, \ldots, w_k \in F_A \), let \(G_{w_1,\ldots,w_k} = \langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \).

Theorem (Arzhantseva-Ol’shanskii, ’96)

\[
\exists \lim_{n\to\infty} \frac{|\{(w_1, \ldots, w_k) \in B(n)^k \mid G_{w_1,\ldots,w_k} \text{ is infinite hyperbolic}\}|}{|B(n)|^k} = 1.
\]

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.
Arzhantseva-Ol’shanskii’s proof

- Fix $r \geq 2$ and $k \geq 1$.
- Consider the free group $F_A = \langle a_1, \ldots, a_r | - \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, \ldots, w_k \in F_A$, let $G_{w_1,\ldots,w_k} = \langle a_1, \ldots, a_r | w_1, \ldots, w_k \rangle$.

Theorem (Arzhantseva-Ol’shanskii, ’96)

$$\exists \lim_{n \to \infty} \frac{|\{ (w_1, \ldots, w_k) \in B(n)^k \mid G_{w_1,\ldots,w_k} \text{ is infinite hyperbolic } \}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.
Arzhantseva-Ol’shanskii’s proof

- Fix $r \geq 2$ and $k \geq 1$.
- Consider the free group $F_A = \langle a_1, \ldots, a_r \mid - \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, \ldots, w_k \in F_A$, let $G_{w_1,\ldots,w_k} = \langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle$.

Theorem (Arzhantseva-Ol’shanskii, ’96)

$$\exists \lim_{n \to \infty} \frac{|\{(w_1, \ldots, w_k) \in B(n)^k \mid G_{w_1,\ldots,w_k} \text{ is infinite hyperbolic }\}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.
Fix \(r \geq 2 \) and \(k \geq 1 \).

Consider the free group \(F_A = \langle a_1, \ldots, a_r \mid - \rangle \).

In \(F_A \) we have the natural notion of size and balls.

For \(w_1, \ldots, w_k \in F_A \), let \(G_{w_1,\ldots,w_k} = \langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \).

Theorem (Arzhantseva-Ol’shanskii, ’96)

\[
\exists \lim_{n \to \infty} \frac{|\{(w_1, \ldots, w_k) \in B(n)^k \mid G_{w_1,\ldots,w_k} \text{ is infinite hyperbolic }\}|}{|B(n)|^k} = 1.
\]

Hence, generically many presentations present an infinite hyperbolic group.

The proof is a detailed counting, using the notion of small cancelation.
Fix $r \geq 2$ and $k \geq 1$.
Consider the free group $F_A = \langle a_1, \ldots, a_r \mid - \rangle$.
In F_A we have the natural notion of size and balls.
For $w_1, \ldots, w_k \in F_A$, let $G_{w_1,\ldots,w_k} = \langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle$.

Theorem (Arzhantseva-Ol’shanskii, ’96)

$$\exists \lim_{n \to \infty} \frac{|\{(w_1, \ldots, w_k) \in B(n)^k \mid G_{w_1,\ldots,w_k} \text{ is infinite hyperbolic}\}|}{|B(n)|^k} = 1.$$

Hence, **generically many presentations present an infinite hyperbolic group.**
The proof is a detailed counting, using the notion of **small cancelation**.
This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.

Problem-1: this counts r-generated, k-related groups, with r and k fixed.

Problem-2: this counts presentations, not really groups!

maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.

maybe $\langle w_1, \ldots, w_k \rangle \neq \langle w'_1, \ldots, w'_k \rangle$, but they have the same normal closure $\langle \langle w_1, \ldots, w_k \rangle \rangle = \langle \langle w'_1, \ldots, w'_k \rangle \rangle$.

maybe even $\langle \langle w_1, \ldots, w_k \rangle \rangle \neq \langle \langle w'_1, \ldots, w'_k \rangle \rangle$, but $\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid w'_1, \ldots, w'_k \rangle$.
This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.

Problem-1: this counts r-generated, k-related groups, with r and k fixed.

Problem-2: this counts presentations, not really groups!

maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.

maybe $\langle w_1, \ldots, w_k \rangle \neq \langle w'_1, \ldots, w'_k \rangle$, but they have the same normal closure $\langle\langle w_1, \ldots, w_k \rangle\rangle = \langle\langle w'_1, \ldots, w'_k \rangle\rangle$.

maybe even $\langle\langle w_1, \ldots, w_k \rangle\rangle \neq \langle\langle w'_1, \ldots, w'_k \rangle\rangle$, but $\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid w'_1, \ldots, w'_k \rangle$.
- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.

- Problem-1: this counts r-generated, k-related groups, with r and k fixed.

- Problem-2: this counts presentations, not really groups!

- maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.

- maybe $\langle w_1, \ldots, w_k \rangle \neq \langle w'_1, \ldots, w'_k \rangle$, but they have the same normal closure $\langle \langle w_1, \ldots, w_k \rangle \rangle = \langle \langle w'_1, \ldots, w'_k \rangle \rangle$.

- maybe even $\langle \langle w_1, \ldots, w_k \rangle \rangle \neq \langle \langle w'_1, \ldots, w'_k \rangle \rangle$, but $\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a'_1, \ldots, a_r \mid w'_1, \ldots, w'_k \rangle$.
This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.

Problem-1: this counts \(r \)-generated, \(k \)-related groups, with \(r \) and \(k \) fixed.

Problem-2: this counts presentations, not really groups!

maybe different \(k \)-tuples \((w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k) \) generate the same subgroup \(\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle \).

maybe \(\langle w_1, \ldots, w_k \rangle \neq \langle w'_1, \ldots, w'_k \rangle \), but they have the same normal closure \(\langle \langle w_1, \ldots, w_k \rangle \rangle = \langle \langle w'_1, \ldots, w'_k \rangle \rangle \).

maybe even \(\langle \langle w_1, \ldots, w_k \rangle \rangle \neq \langle \langle w'_1, \ldots, w'_k \rangle \rangle \), but \(\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \cong \langle a_1, \ldots, a_r \mid w'_1, \ldots, w'_k \rangle \).
This fits the algebraic intuition: the longer the relations are, the closest
will the group be to a free group.

Problem-1: this counts r-generated, k-related groups, with r and k fixed.

Problem-2: this counts presentations, not really groups!

maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same
subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.

maybe $\langle w_1, \ldots, w_k \rangle \neq \langle w'_1, \ldots, w'_k \rangle$, but they have the same normal
closure $\langle \langle w_1, \ldots, w_k \rangle \rangle = \langle \langle w'_1, \ldots, w'_k \rangle \rangle$.

maybe even $\langle \langle w_1, \ldots, w_k \rangle \rangle \neq \langle \langle w'_1, \ldots, w'_k \rangle \rangle$, but
$\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid w'_1, \ldots, w'_k \rangle$.
This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.

Problem-1: this counts r-generated, k-related groups, with r and k fixed.

Problem-2: this counts presentations, not really groups!

maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup \(\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle \).

maybe \(\langle w_1, \ldots, w_k \rangle \neq \langle w'_1, \ldots, w'_k \rangle \), but they have the same normal closure \(\langle \langle w_1, \ldots, w_k \rangle \rangle = \langle \langle w'_1, \ldots, w'_k \rangle \rangle \).

maybe even \(\langle \langle w_1, \ldots, w_k \rangle \rangle \neq \langle \langle w'_1, \ldots, w'_k \rangle \rangle \), but
\[
\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid w'_1, \ldots, w'_k \rangle.
\]
1. A claim due to Gromov
2. Arzhantseva-Ol’shanskii’s proof
3. A new point of view
4. Stallings’ graphs
5. Counting Stallings’ graphs: partial injections
6. Most groups are trivial
7. Proof of the combinatorial theorem
A new point of view

Observation

Let $N = \langle w_1, \ldots, w_k \rangle \leq F_A$. Then,

$$\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid N \rangle.$$

and let us count f.g. subgroups N of F_A, instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

... but with very different results... this is a very different direction to infinity.
Observation

Let \(N = \langle w_1, \ldots, w_k \rangle \leq F_A \). Then,

\[
\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid N \rangle.
\]

and let us count f.g. subgroups \(N \) of \(F_A \), instead of counting \(k \)-tuples of words.

Advantages:

- \(r \) still fixed, but not \(k \).
- less redundancy.
- it will be an equally natural way of counting.

... but with very different results... this is a very different direction to infinity.
Observation

Let $N = \langle w_1, \ldots, w_k \rangle \leq F_A$. Then,

$$\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid N \rangle.$$

and let us count f.g. subgroups N of F_A, instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

... but with very different results... this is a very different direction to infinity.
A new point of view

Observation

Let $N = \langle w_1, \ldots, w_k \rangle \leq F_A$. Then,

$$\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid N \rangle.$$

and let us count f.g. subgroups N of F_A, instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

... but with very different results... this is a very different direction to infinity.
A new point of view

Observation

Let \(N = \langle w_1, \ldots, w_k \rangle \leq F_A \). Then,

\[
\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid N \rangle.
\]

and let us count f.g. subgroups \(N \) of \(F_A \), instead of counting \(k \)-tuples of words.

Advantages:

- \(r \) still fixed, but not \(k \).
- less redundancy.
- it will be an equally natural way of counting.

... but with very different results... this is a very different direction to infinity.
A new point of view

Observation

Let $N = \langle w_1, \ldots, w_k \rangle \leq F_A$. Then,

$$\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid N \rangle.$$

and let us count f.g. subgroups N of F_A, instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

... but with very different results... this is a very different direction to infinity.
A new point of view

Observation

Let \(N = \langle w_1, \ldots, w_k \rangle \leq F_A \). Then,

\[
\langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle \simeq \langle a_1, \ldots, a_r \mid N \rangle.
\]

and let us count f.g. subgroups \(N \) of \(F_A \), instead of counting \(k \)-tuples of words.

Advantages:

- \(r \) still fixed, but not \(k \).
- less redundancy.
- it will be an equally natural way of counting.

... but with very different results... this is a very different direction to infinity.
Outline

1. A claim due to Gromov
2. Arzhantseva-Ol’shanskii’s proof
3. A new point of view
4. Stallings’ graphs
5. Counting Stallings’ graphs: partial injections
6. Most groups are trivial
7. Proof of the combinatorial theorem
A **Stallings automaton** is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

1. X is connected,
2. no vertex of degree 1 except possibly v (X is a core-graph),
3. no two edges with the same label go out of (or in to) the same vertex.

NO:

```
<table>
<thead>
<tr>
<th>a ↙</th>
<th>b ↙</th>
<th>c ↙</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>a →</th>
<th>b →</th>
<th>c ←</th>
</tr>
</thead>
</table>
```

YES:

```
<table>
<thead>
<tr>
<th>a ↙</th>
<th>b ↙</th>
<th>c ↙</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>a →</th>
<th>b →</th>
<th>c ←</th>
</tr>
</thead>
</table>
```

Enric Ventura (UPC)
A **Stallings automaton** is a finite A-labeled oriented graph with a distinguished vertex, \((X, v)\), such that:

1- \(X\) is connected,
2- no vertex of degree 1 except possibly \(v\) (\(X\) is a **core-graph**),
3- no two edges with the same label go out of (or in to) the same vertex.
A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, \((X, v)\), such that:

1. \(X\) is connected,
2. no vertex of degree 1 except possibly \(v\) (\(X\) is a core-graph),
3. no two edges with the same label go out of (or in to) the same vertex.

NO:

\[
\begin{array}{c}
\bullet \quad a \\
\downarrow \quad b \\
\bullet \quad a \\
\downarrow \quad b \\
\bullet \quad a \\
\end{array}
\]

\[
\begin{array}{c}
\bullet \quad c \\
\downarrow \quad c \\
\bullet \quad c \\
\end{array}
\]

YES:

\[
\begin{array}{c}
\bullet \quad a \\
\downarrow \quad b \\
\bullet \quad a \\
\downarrow \quad b \\
\bullet \quad a \\
\end{array}
\]

\[
\begin{array}{c}
\bullet \quad c \\
\downarrow \quad c \\
\bullet \quad c \\
\end{array}
\]
In the influential paper

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

\[
\{\text{f.g. subgroups of } F_A\} \leftrightarrow \{\text{Stallings automata over } A\},
\]

which is crucial for the modern understanding of the lattice of subgroups of F_A.
In the influent paper

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

\[
\{\text{f.g. subgroups of } F_A\} \leftrightarrow \{\text{Stallings automata over } A\},
\]

which is crucial for the modern understanding of the lattice of subgroups of F_A.
In the influential paper

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

$$\{\text{f.g. subgroups of } F_A\} \leftrightarrow \{\text{Stallings automata over } A\},$$

which is crucial for the modern understanding of the lattice of subgroups of F_A.
Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{labels of closed paths at } v \} \leq F_A,$$

clearly, a subgroup of F_A.

\[\begin{align*}
\pi(X, \bullet) & = \{ 1, a, a^{-1}, bab, bc^{-1}b, \nonumber \\
& \quad babab^{-1}cb^{-1}, \ldots \} \\
\pi(X, \bullet) \not\ni bc^{-1}bcaa \nonumber \\
\text{Membership problem in } \pi(X, \bullet) \text{ is solvable.} \nonumber
\end{align*} \]
Reading the subgroup from the automata

Definition

To any given (Stallings) automaton \((X, v)\), we associate its fundamental group:

\[
\pi(X, v) = \{ \text{labels of closed paths at } v \} \leq F_A,
\]

clearly, a subgroup of \(F_A\).

\[
\begin{align*}
\pi(X, \bullet) &= \{1, a, a^{-1}, bab, bc^{-1}b, \\
&\quad babab^{-1}cb^{-1}, \ldots\}
\end{align*}
\]

\[
\pi(X, \bullet) \not\ni bc^{-1}bc\alpha
\]

Membership problem in \(\pi(X, \bullet)\) is solvable.
A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |V_X| + |E_X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E_X - E_T$, $x_e = \text{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e | e \in E_X - E_T\}$ is a basis for $\pi(X, v)$.
- And, $|E_X - E_T| = |E_X| - |E_T| = |E_X| - (|V_T| - 1) = 1 - |V_X| + |E_X|$. \square
A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $\text{rk}(\pi(X, v)) = 1 - |V_X| + |E_X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E_X - E_T$, $x_e = \text{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e | e \in E_X - E_T\}$ is a basis for $\pi(X, v)$.
- And, $|E_X - E_T| = |E_X| - |E_T|$

 $ = |E_X| - (|V_T| - 1) = 1 - |V_X| + |E_X|$. □
A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank

$$\text{rk}(\pi(X, v)) = 1 - |V_X| + |E_X|.$$

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E_X - E_T$, $x_e = \text{label}(T[v, e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in E_X - E_T\}$ is a basis for $\pi(X, v)$.
- And, $|E_X - E_T| = |E_X| - |E_T|$

 $$= |E_X| - (|V_T| - 1) = 1 - |V_X| + |E_X|. \square$$

Enric Ventura (UPC)

Most groups are hyperbolic... or trivial?

March 18th, 2010 19 / 53
A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank

$$rk(\pi(X, v)) = 1 - |V_X| + |E_X|.$$

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E_X - E_T$, $x_e = label(T[v, e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e | e \in E_X - E_T\}$ is a basis for $\pi(X, v)$.
- And, $|E_X - E_T| = |E_X| - |E_T|$
 $$= |E_X| - (|V_T| - 1) = 1 - |V_X| + |E_X|.$$
A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank

$$rk(\pi(X, v)) = 1 - |V_X| + |E_X|.$$

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E_X - E_T$, $x_e = \text{label}(T[v, e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in E_X - E_T\}$ is a basis for $\pi(X, v)$.
- And, $|E_X - E_T| = |E_X| - |E_T|$
 $$= |E_X| - (|V_T| - 1) = 1 - |V_X| + |E_X|.$$

□
A basis for $\pi(X, \nu)$

Proposition

For every Stallings automaton (X, ν), the group $\pi(X, \nu)$ is free of rank

$$rk(\pi(X, \nu)) = 1 - |V_X| + |E_X|.$$

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E_X - E_T$, $x_e = \text{label}(T[v, \iota e] \cdot e \cdot T[\tau e, \nu])$ belongs to $\pi(X, \nu)$.
- Not difficult to see that $\{x_e \mid e \in E_X - E_T\}$ is a basis for $\pi(X, \nu)$.
- And,
 $$|E_X - E_T| = |E_X| - |E_T|$$
 $$= |E_X| - (|V_T| - 1) = 1 - |V_X| + |E_X|.$$

\square
Most groups are hyperbolic... or trivial?

$$H = \langle \quad \rangle$$
Example

$H = \langle a, \quad \rangle$
Example

\[H = \langle a, \ bab, \ c \rangle \]
Example

\[H = \langle a, \ bab, \ b^{-1} cb^{-1} \rangle \]
Example

$H = \langle a, bab, b^{-1}cb^{-1} \rangle$

$\text{rk}(H) = 1 - 3 + 5 = 3.$
$F_{\mathbb{N}_0} \simeq H = \langle \ldots, b^{-2}ab^2, b^{-1}ab, a, bab^{-1}, b^2ab^{-2}, \ldots \rangle \leq F_2$.
In any automaton containing the following situation, for $x \in A^{\pm 1}$,

we can fold and identify vertices u and v to obtain

This operation, $(X, v) \sim (X', v)$, is called a Stallings folding.
Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

\[
\begin{array}{c}
\bullet \\
\downarrow x \\
\downarrow x \\
\rightarrow u \\
\end{array}
\begin{array}{c}
\bullet \\
\downarrow x \\
\downarrow x \\
\rightarrow v \\
\end{array}
\]

we can fold and identify vertices u and v to obtain

\[
\begin{array}{c}
\bullet \\
\rightarrow x \\
\rightarrow u = v \\
\end{array}
\]

This operation, $(X, v) \sim (X', v)$, is called a Stallings folding.
In any automaton containing the following situation, for $x \in A^\pm$,

\[
\bullet \xrightarrow{x} u \quad \bullet \xrightarrow{x} v
\]

we can fold and identify vertices u and v to obtain

\[
\bullet \xrightarrow{x} u = v.
\]

This operation, $(X, v) \leadsto (X', v)$, is called a Stallings folding.
Lemma (Stallings)

If \((X, v) \leadsto (X', v')\) is a Stallings folding then \(\pi(X, v) = \pi(X', v')\).

Given a f.g. subgroup \(H = \langle w_1, \ldots w_m \rangle \leq F_A\) (we assume \(w_i\) are reduced words), do the following:

1. Draw the flower automaton,
2. Perform successive foldings until obtaining a Stallings automaton, denoted \(\Gamma(H)\).
Constructing the automata from the subgroup

Lemma (Stallings)

If \((X, v) \leadsto (X', v')\) is a Stallings folding then \(\pi(X, v) = \pi(X', v')\).

Given a f.g. subgroup \(H = \langle w_1, \ldots w_m \rangle \leq F_A\) (we assume \(w_i\) are reduced words), do the following:

1- **Draw the flower automaton**,

2- **Perform successive foldings until obtaining a Stallings automaton, denoted \(\Gamma(H)\).**
Constructing the automata from the subgroup

Lemma (Stallings)

If \((X, v) \rightsquigarrow (X', v')\) is a Stallings folding then \(\pi(X, v) = \pi(X', v')\).

Given a f.g. subgroup \(H = \langle w_1, \ldots w_m \rangle \leq F_A\) (we assume \(w_i\) are reduced words), do the following:

1. **Draw the flower automaton,**
2. **Perform successive foldings until obtaining a Stallings automaton, denoted \(\Gamma(H)\).**
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

$Flower(H)$
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

Flower(H)
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

Folding #1
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

Folding #2.
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

By Stallings Lemma, \(\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle \)

Folding #3.
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

Folding #3. $\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

By Stallings Lemma,

$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$$

$$= \langle b, aba^{-1}, a^3 \rangle$$
It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

$$\{\text{f.g. subgroups of } F_A\} \leftrightarrow \{\text{Stallings automata}\}$$

$$H \rightarrow \Gamma(H)$$

$$\pi(X, v) \leftrightarrow (X, v)$$
Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

\[
\{ \text{f.g. subgroups of } F_A \} \leftrightarrow \{ \text{Stallings automata} \} \\
H \rightarrow \Gamma(H) \\
\pi(X, v) \leftrightarrow (X, v)
\]
Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

\[
\begin{align*}
\{ \text{f.g. subgroups of } F_A \} & \leftrightarrow \{ \text{Stallings automata} \} \\
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow (X, v)
\end{align*}
\]
Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920’s) is combinatorial and much more technical.
Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920’s) is combinatorial and much more technical.
Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).

- The original proof (1920’s) is combinatorial and much more technical.
Outline

1. A claim due to Gromov
2. Arzhantseva-Ol’shanskii’s proof
3. A new point of view
4. Stallings’ graphs
5. Counting Stallings’ graphs: partial injections
6. Most groups are trivial
7. Proof of the combinatorial theorem
Stallings’ graphs as partial injections

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices V_Γ: $a(i) = j$ iff $i \xrightarrow{a} j$.

Observation

And the r partial injections a_1, \ldots, a_r determine back the graph Γ.
Stallings’ graphs as partial injections

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: $a(i) = j$ iff $i \xrightarrow{a} j$.

Observation

And the r partial injections a_1, \ldots, a_r determine back the graph Γ.
Stallings’ graphs as partial injections

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: $a(i) = j$ iff $i \xrightarrow{a} j$.

Observation

And the r partial injections a_1, \ldots, a_r determine back the graph Γ.
Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices V_Γ: $a(i) = j$ iff $i \xrightarrow{a} j$.

Observation

And the r partial injections a_1, \ldots, a_r determine back the graph Γ.
Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: $a(i) = j$ iff $i \xrightarrow{a} j$.

Observation

And the r partial injections a_1, \ldots, a_r determine back the graph Γ.

\[
\begin{array}{cccc}
a: V & \rightarrow & V & b: V \rightarrow V & c: V \rightarrow V \\
1 \leftrightarrow 1 & 1 & 1 \leftrightarrow 2 & 1 \\
2 \leftrightarrow 3 & 2 & 3 \leftrightarrow 1 & 2 \\
3 & 3 \leftrightarrow 1 & 3 \leftrightarrow 2 \\
\end{array}
\]
Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: $a(i) = j$ iff $i \xrightarrow{a} j$.

And the r partial injections a_1, \ldots, a_r determine back the graph Γ.
Stallings’ graphs as partial injections

Definition

Let I_n be the set of partial injections of $[n] = \{1, 2, \ldots, n\}$.

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections, plus a base-point, $\sigma \in I_n^r \times [n]$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

There are at most $|I_n|^r \cdot n$ Stallings graphs with n vertices (over A).
Stallings’ graphs as partial injections

Definition

Let \(I_n \) be the set of partial injections of \([n] = \{1, 2, \ldots, n\}\).

A **Stallings graph (over A)** with \(n \) vertices can be thought as a \(r \)-tuple of partial injections, plus a base-point, \(\sigma \in I_n^r \times [n] \), such that

- the corresponding graph \(\Gamma(\sigma) \) is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

There are at most \(|I_n|^r \cdot n \) Stallings graphs with \(n \) vertices (over A).
Stallings’ graphs as partial injections

Definition

Let I_n be the set of partial injections of $[n] = \{1, 2, \ldots, n\}$.

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections, plus a base-point, $\sigma \in I^n_r \times [n]$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

There are at most $|I_n|^r \cdot n$ Stallings graphs with n vertices (over A).
Stallings’ graphs as partial injections

Definition

Let I_n be the set of partial injections of $[n] = \{1, 2, \ldots, n\}$.

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections, plus a base-point, $\sigma \in I_n^r \times [n]$, such that

1. the corresponding graph $\Gamma(\sigma)$ is connected,
2. and without degree 1 vertices, except possibly the base-point.

Observation

There are at most $|I_n|^r \cdot n$ Stallings graphs with n vertices (over A).
Definition

Let I_n be the set of partial injections of $[n] = \{1, 2, \ldots, n\}$.

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections, plus a base-point, $\sigma \in I_n^r \times [n]$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

There are at most $|I_n|^r \cdot n$ Stallings graphs with n vertices (over A).
Theorem (Bassino, Nicaud, Weil, 2008)

\[a) \ |\{\sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ not connected}\}| \leq \frac{1}{n^{r-1}}. \]

\[b) \ |\{\sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ has a deg. 1 vertex } \neq \text{ bspt.}\}| \leq o(1). \]

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections, plus a base-point, \(I_n^r \times [n] \).

Hence, counting Stallings graphs reduces to count partial injections: a purely combinatorial matter.
Stallings’ graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

\[a) \quad \frac{|\{\sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ not connected}\}|}{|I_n|^r \cdot n} = O\left(\frac{1}{n^{r-1}}\right). \]

\[b) \quad \frac{|\{\sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ has a deg. 1 vertex } \neq \text{bspt.}\}|}{|I_n|^r \cdot n} = o(1). \]

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections, plus a base-point, \(I_n^r \times [n] \).

Hence, counting Stallings graphs reduces to count partial injections: a purely combinatorial matter.
Stallings’ graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

\[\left|\left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ not connected} \right\} \right| = O\left(\frac{1}{n^{r-1}}\right).\]

\[\left|\left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ has a deg. 1 vertex} \neq \text{bspt.} \right\} \right| = o(1).\]

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections, plus a base-point, \(I_n^r \times [n]\).

Hence, counting Stallings graphs reduces to count partial injections: a purely combinatorial matter.
Theorem (Bassino, Nicaud, Weil, 2008)

\[\frac{1}{|I_n|} \cdot \frac{1}{n} = O\left(\frac{1}{n^{r-1}} \right). \]

\[\frac{1}{|I_n|} \cdot \frac{1}{n} = o(1). \]

Corollary

Generically, a Stallings graph (over A) with \(n \) vertices is just a \(r \)-tuple of partial injections, plus a base-point, \(I_n^r \times [n] \).

Hence, counting Stallings graphs reduces to count partial injections: a purely combinatorial matter.
Counting partial injections

Observation

Any partial injection $\sigma \in I_n$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_n$ is called a
- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_n and J_n, resp., be the sets of permutations and fragmented permutations in I_n.

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $|I_n| = \sum_{k=0}^{n} \binom{n}{k} |S_k||J_{n-k}| = \sum_{k=0}^{n} \frac{n!}{(n-k)!} |J_{n-k}|$.
Counting partial injections

Observation

Any partial injection $\sigma \in I_n$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_n$ is called a
- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_n and J_n, resp., be the sets of permutations and fragmented permutations in I_n.

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $|I_n| = \sum_{k=0}^{n} \binom{n}{k} |S_k||J_{n-k}| = \sum_{k=0}^{n} \frac{n!}{(n-k)!} |J_{n-k}|$.
Counting partial injections

Observation

Any partial injection $\sigma \in I_n$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_n$ is called a

- **permutation** if all its orbits are closed,
- **fragmented permutation** if all its orbits are open.

Let S_n and J_n, resp., be the sets of permutations and fragmented permutations in I_n.

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $|I_n| = \sum_{k=0}^{n} \binom{n}{k} |S_k| |J_{n-k}| = \sum_{k=0}^{n} \frac{n!}{(n-k)!} |J_{n-k}|$.
Counting partial injections

Observation

Any partial injection \(\sigma \in I_n \) decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection \(\sigma \in I_n \) is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let \(S_n \) and \(J_n \), resp., be the sets of permutations and fragmented permutations in \(I_n \).

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, \(|I_n| = \sum_{k=0}^{n} \binom{n}{k} |S_k| |J_{n-k}| = \sum_{k=0}^{n} \frac{n!}{(n-k)!} |J_{n-k}| \).
Counting partial injections

Observation

Any partial injection $\sigma \in I_n$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_n$ is called a

- *permutation* if all its orbits are closed,
- *fragmented permutation* if all its orbits are open.

Let S_n and J_n, resp., be the sets of permutations and fragmented permutations in I_n.

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $|I_n| = \sum_{k=0}^{n} \binom{n}{k} |S_k||J_{n-k}| = \sum_{k=0}^{n} \frac{n!}{(n-k)!} |J_{n-k}|$.
Counting partial injections

Definition

a) The **EGS for partial injections**: \(I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n. \)

b) The **EGS for permutations**: \(S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}. \)

c) The **EGS for fragmented permutations**: \(J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n. \)

Theorem

a) \(I(z) = \frac{1}{1-z} e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2} z^2 + \frac{17}{3} z^3 + \cdots. \)

b) \(\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)). \)

Theorem

a) \(J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2} z^2 + \frac{13}{6} z^3 + \cdots. \)

b) \(\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)). \)

Hence, \(\frac{|J_n|}{|I_n|} = O\left(\frac{1}{n^{1/2}} \right). \)
Counting partial injections

Definition

a) The EGS for partial injections: \(I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n. \)

b) The EGS for permutations: \(S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}. \)

c) The EGS for fragmented permutations: \(J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n. \)

Theorem

a) \(I(z) = \frac{1}{1-z} e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2} z^2 + \frac{17}{3} z^3 + \cdots. \)

b) \(\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)). \)

Theorem

a) \(J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2} z^2 + \frac{13}{6} z^3 + \cdots. \)

b) \(\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)). \)

Hence, \(\frac{|J_n|}{|I_n|} = O\left(\frac{1}{n^{1/2}}\right). \)
Counting partial injections

Definition

a) The EGS for partial injections: \(I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n. \)

b) The EGS for permutations: \(S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}. \)

c) The EGS for fragmented permutations: \(J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n. \)

Theorem

a) \(I(z) = \frac{1}{1-z} e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2} z^2 + \frac{17}{3} z^3 + \cdots. \)

b) \(\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)). \)

Theorem

a) \(J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2} z^2 + \frac{13}{6} z^3 + \cdots. \)

b) \(\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)). \)

Hence, \(\frac{|J_n|}{|I_n|} = \mathcal{O}\left(\frac{1}{n^{1/2}} \right). \)
Counting partial injections

Definition

a) The **EGS for partial injections**: \(I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n\).

b) The **EGS for permutations**: \(S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}\).

c) The **EGS for fragmented permutations**: \(J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n\).

Theorem

a) \(I(z) = \frac{1}{1-z} e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2} z^2 + \frac{17}{3} z^3 + \cdots\).

b) \(\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi}n^{\frac{1}{4}}} (1 + o(1))\).

Theorem

a) \(J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2} z^2 + \frac{13}{6} z^3 + \cdots\).

b) \(\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi}n^{\frac{3}{4}}} (1 + o(1))\).

Hence, \(\frac{|J_n|}{|I_n|} = O\left(\frac{1}{n^{1/2}}\right)\).
Counting partial injections

Definition

a) The EGS for partial injections: \(I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n. \)

b) The EGS for permutations: \(S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}. \)

c) The EGS for fragmented permutations: \(J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n. \)

Theorem

a) \(I(z) = \frac{1}{1-z} e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2} z^2 + \frac{17}{3} z^3 + \cdots. \)

b) \(\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi} n^{\frac{1}{4}}} n^{-\frac{1}{4}} (1 + o(1)). \)

Theorem

a) \(J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2} z^2 + \frac{13}{6} z^3 + \cdots. \)

b) \(\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi} n^{\frac{3}{4}}} n^{-\frac{3}{4}} (1 + o(1)). \)

Hence, \(\frac{|J_n|}{|I_n|} = O\left(\frac{1}{n^{1/2}}\right). \)
Definition

a) The **EGS for partial injections**: \(I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n. \)

b) The **EGS for permutations**: \(S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}. \)

c) The **EGS for fragmented permutations**: \(J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n. \)

Theorem

a) \(I(z) = \frac{1}{1-z} e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2} z^2 + \frac{17}{3} z^3 + \cdots. \)

b) \(\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi} n^{-\frac{1}{2}}} (1 + o(1)). \)

Theorem

a) \(J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2} z^2 + \frac{13}{6} z^3 + \cdots. \)

b) \(\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi} n^{-\frac{3}{4}}} (1 + o(1)). \)

Hence, \(\frac{|J_n|}{|I_n|} = \mathcal{O}\left(\frac{1}{n^{1/2}}\right). \)
Counting partial injections

Definition

a) The EGS for partial injections: \(I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n \).

b) The EGS for permutations: \(S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \).

c) The EGS for fragmented permutations: \(J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n \).

Theorem

a) \(I(z) = \frac{1}{1-z} e^{\frac{z}{\sqrt{1-z}}} = 1 + 2z + \frac{7}{2} z^2 + \frac{17}{3} z^3 + \cdots \).

b) \(\frac{|I_n|}{n!} = e^{2\sqrt{n}} \frac{1}{2\sqrt{\pi} e} n^{-\frac{3}{4}} (1 + o(1)) \).

Theorem

a) \(J(z) = e^{\frac{z}{\sqrt{1-z}}} = 1 + z + \frac{3}{2} z^2 + \frac{13}{6} z^3 + \cdots \).

b) \(\frac{|J_n|}{n!} = e^{2\sqrt{n}} \frac{1}{2\sqrt{\pi} e} n^{-\frac{3}{4}} (1 + o(1)) \).

Hence, \(\frac{|J_n|}{|I_n|} = O\left(\frac{1}{n^{3/2}}\right) \).
Counting partial injections

Definition

a) The EGS for partial injections: \(I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n. \)

b) The EGS for permutations: \(S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1 - z}. \)

c) The EGS for fragmented permutations: \(J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n. \)

Theorem

a) \(I(z) = \frac{1}{1 - z} e^{\frac{z}{1 - z}} = 1 + 2z + \frac{7}{2}z^2 + \frac{17}{3}z^3 + \cdots. \)

b) \(\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi}e} n^{-\frac{1}{4}} (1 + o(1)). \)

Theorem

a) \(J(z) = e^{\frac{z}{1 - z}} = 1 + z + \frac{3}{2}z^2 + \frac{13}{6}z^3 + \cdots. \)

b) \(\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi}e} n^{-\frac{3}{4}} (1 + o(1)). \)

Hence, \(\frac{|J_n|}{|I_n|} = O\left(\frac{1}{n^{1/2}} \right). \)
Outline

1. A claim due to Gromov
2. Arzhantseva-Ol’shanskii’s proof
3. A new point of view
4. Stallings’ graphs
5. Counting Stallings’ graphs: partial injections
6. Most groups are trivial
7. Proof of the combinatorial theorem
Most groups are trivial

Definition

Let $\sigma \in I_n$. Define $\text{gcd}(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_n$, put $\text{gcd}(\sigma) = \infty$).

Key observation

Let $\sigma = (\sigma_1, \ldots, \sigma_r, j) \in I_n^r \times [n]$, let $\Gamma(\sigma)$ be the corresponding (Stallings) graph, and let $G = \langle a_1, \ldots, a_r \mid \pi(\Gamma(\sigma)) \rangle$. We have,

- if $\text{gcd}(\sigma_i) = 1$ then $a_i = 1$ in G,
- if $\text{gcd}(\sigma_1) = \cdots = \text{gcd}(\sigma_r) = 1$ then $G = 1$.
Most groups are trivial

Definition

Let $\sigma \in I_n$. Define $\gcd(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_n$, put $\gcd(\sigma) = \infty$).

Key observation

Let $\sigma = (\sigma_1, \ldots, \sigma_r, j) \in I_n^r \times [n]$, let $\Gamma(\sigma)$ be the corresponding (Stallings) graph, and let $G = \langle a_1, \ldots, a_r \mid \pi(\Gamma(\sigma)) \rangle$. We have,

- if $\gcd(\sigma_i) = 1$ then $a_i = 1$ in G,
- if $\gcd(\sigma_1) = \cdots = \gcd(\sigma_r) = 1$ then $G = 1$.
Most groups are trivial

Definition

Let $\sigma \in I_n$. Define $\gcd(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_n$, put $\gcd(\sigma) = \infty$).

Key observation

Let $\sigma = (\sigma_1, \ldots, \sigma_r, j) \in I_n \times [n]$, let $\Gamma(\sigma)$ be the corresponding (Stallings) graph, and let $G = \langle a_1, \ldots, a_r | \pi(\Gamma(\sigma)) \rangle$. We have,

- if $\gcd(\sigma_i) = 1$ then $a_i = 1$ in G,
- if $\gcd(\sigma_1) = \cdots = \gcd(\sigma_r) = 1$ then $G = 1$.
Most groups are trivial

Definition

Let $\sigma \in I_n$. Define $\operatorname{gcd}(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_n$, put $\operatorname{gcd}(\sigma) = \infty$).

Key observation

Let $\sigma = (\sigma_1, \ldots, \sigma_r, j) \in I_n^r \times [n]$, let $\Gamma(\sigma)$ be the corresponding (Stallings) graph, and let $G = \langle a_1, \ldots, a_r \mid \pi(\Gamma(\sigma)) \rangle$. We have,

- if $\operatorname{gcd}(\sigma_i) = 1$ then $a_i = 1$ in G,
- if $\operatorname{gcd}(\sigma_1) = \cdots = \operatorname{gcd}(\sigma_r) = 1$ then $G = 1$.
Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right| \frac{1}{|I_n|} = O\left(\frac{1}{n^{1/6}} \right)
\]

Corollary

\[
\left| \left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \& G \neq 1 \right\} \right| \frac{1}{\left| \left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \right\} \right|} = O\left(\frac{1}{n^{1/6}} \right).
\]

Proof.

\[
= \frac{|I_n^r| \cdot n}{\left| \left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \right\} \right|} \cdot \frac{\left| \left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \& G \neq 1 \right\} \right|}{|I_n^r| \cdot n}
\]

\[
\leq 2 \cdot \frac{r \cdot |I_n|^{r-1} \cdot n \cdot \left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right|}{|I_n|^r \cdot n} = \]

Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right| \leq O\left(\frac{1}{n^{1/6}} \right)\]

Corollary

\[
\left| \left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \& G \neq 1 \right\} \right| \leq O\left(\frac{1}{n^{1/6}} \right).\]

Proof.

\[
\frac{|I_n^r| \cdot n}{|\left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \right\}|} \cdot \frac{|\left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \& G \neq 1 \right\}|}{|I_n^r| \cdot n} \leq 2 \cdot \frac{r \cdot |I_n|^{r-1} \cdot n \cdot |\left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\}|}{|I_n|^r \cdot n} = \]

Enric Ventura (UPC)
Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\frac{\left| \{ \sigma \in I_n \mid \gcd(\sigma) > 1 \} \right|}{|I_n|} = O\left(\frac{1}{n^{1/6}} \right)
\]

Corollary

\[
\frac{\left| \{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \& G \neq 1 \} \right|}{\left| \{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \} \right|} = O\left(\frac{1}{n^{1/6}} \right).
\]

Proof.

\[
\frac{\left| I_n^r \right| \cdot n}{\left| \{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \} \right|} \cdot \frac{\left| \{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \& G \neq 1 \} \right|}{\left| I_n^r \right| \cdot n}
\]

\[
\leq 2 \cdot \frac{r \cdot |I_n|^{r-1} \cdot n \cdot \left| \{ \sigma \in I_n \mid \gcd(\sigma) > 1 \} \right|}{|I_n|^r \cdot n}
\]
Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right| \frac{1}{|I_n|} = O\left(\frac{1}{n^{1/6}} \right)
\]

Corollary

\[
\left| \left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \right\} \right| = O\left(\frac{1}{n^{1/6}} \right).
\]

Proof.

\[
\left| \left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } \right\} \right| \cdot \left| \left\{ \sigma \in I_n^r \times [n] \mid \Gamma(\sigma) \text{ St. gr. } & G \neq 1 \right\} \right| = \left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right| \cdot \left| I_n^r \right| \cdot n
\]

\[
\leq 2 \cdot \frac{r \cdot |I_n|^{r-1} \cdot n \cdot \left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right|}{|I_n|^r \cdot n} = \left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right|
\]
Most groups are trivial

\[= 2r \frac{|\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \}|}{|I_n|} = \mathcal{O}(\frac{1}{n^{1/6}}). \quad \square \]

So, we are reduced to proof the purely combinatorial result:

\[\frac{|\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \}|}{|I_n|} = \mathcal{O}(\frac{1}{n^{1/6}}). \]
Most groups are trivial

So, we are reduced to prove the purely combinatorial result:

\[
2r \frac{|\{\sigma \in I_n \mid \gcd(\sigma) > 1\}|}{|I_n|} = \mathcal{O}\left(\frac{1}{n^{1/6}}\right).
\]

\[\square\]
Outline

1. A claim due to Gromov
2. Arzhantseva-Ol’shanskii’s proof
3. A new point of view
4. Stallings’ graphs
5. Counting Stallings’ graphs: partial injections
6. Most groups are trivial
7. Proof of the combinatorial theorem
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right| = O\left(\frac{1}{n^{1/6}} \right)
\]

The permutation case

Definition

For a prime \(p \), let \(S_n^{(p)} \) be the set of permutations \(\sigma \in S_n \) with all its cycles having length multiple of \(p \). Clearly, \(S_n^{(p)} \neq \emptyset \implies p \mid n \).

Lemma

Let \(n \geq 2 \), and \(p \) be a prime divisor of \(n \). Then,

\[
|S_n^{(p)}| \leq 2n!n^{\frac{1}{\rho}-1}.
\]
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\frac{\left| \{ \sigma \in I_n \mid \gcd(\sigma) > 1 \} \right|}{|I_n|} = \mathcal{O}\left(\frac{1}{n^{1/6}} \right)
\]

The permutation case

Definition

For a prime \(p \), let \(S_n^{(p)} \) be the set of permutations \(\sigma \in S_n \) with all its cycles having length multiple of \(p \). Clearly, \(S_n^{(p)} \neq \emptyset \implies p \mid n \).

Lemma

Let \(n \geq 2 \), and \(p \) be a prime divisor of \(n \). Then,

\[
|S_n^{(p)}| \leq 2n!n^{\frac{1}{p}-1}.
\]
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\left| \left\{ \sigma \in I_n \mid \text{gcd}(\sigma) > 1 \right\} \right| = \mathcal{O}\left(\frac{1}{n^{1/6}} \right)
\]

The permutation case

Definition

For a prime \(p \), let \(S_n^{(p)} \) be the set of permutations \(\sigma \in S_n \) with all its cycles having length multiple of \(p \). Clearly, \(S_n^{(p)} \neq \emptyset \) \(\Rightarrow \) \(p \mid n \).

Lemma

Let \(n \geq 2 \), and \(p \) be a prime divisor of \(n \). Then,

\[
|S_n^{(p)}| \leq 2n! n^{\frac{1}{p} - 1}.
\]
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\frac{|\{\sigma \in I_n \mid \gcd(\sigma) > 1\}|}{|I_n|} = O\left(\frac{1}{n^{1/6}}\right)
\]

The permutation case

Definition

For a prime \(p \), let \(S_n^{(p)} \) be the set of permutations \(\sigma \in S_n \) with all its cycles having length multiple of \(p \). Clearly, \(S_n^{(p)} \neq \emptyset \Rightarrow p | n \).

Lemma

Let \(n \geq 2 \), and \(p \) be a prime divisor of \(n \). Then,

\[
|S_n^{(p)}| \leq 2n!n^{1/p-1}.
\]
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\frac{|\{\sigma \in I_n \mid \gcd(\sigma) > 1\}|}{|I_n|} = \mathcal{O}\left(\frac{1}{n^{1/6}}\right)
\]

The permutation case

Definition

For a prime \(p\), let \(S_n^{(p)}\) be the set of permutations \(\sigma \in S_n\) with all its cycles having length multiple of \(p\). Clearly, \(S_n^{(p)} \neq \emptyset\) \(\Rightarrow p|n\).

Lemma

Let \(n \geq 2\), and \(p\) be a prime divisor of \(n\). Then,

\[
|S_n^{(p)}| \leq 2n!n^{\frac{1}{p}-1}.
\]
Proof of the combinatorial theorem

Lemma

Let \(Q_n = \{ \sigma \in S_n \mid \gcd(\sigma) > 1 \} \). Then,

\[
\frac{|Q_n|}{n!} \leq \frac{2}{\sqrt{n}} + 2 \frac{\log_3(n)}{n^{2/3}} = O\left(\frac{1}{\sqrt{n}}\right).
\]

The general case

Lemma

\(\frac{|J_n|}{n!} \) is strictly increasing for \(n \geq 1 \).

Now we are ready to proof the theorem
Proof of the combinatorial theorem

Lemma

Let $Q_n = \{\sigma \in S_n \mid \gcd(\sigma) > 1\}$. Then,

$$\frac{|Q_n|}{n!} \leq \frac{2}{\sqrt{n}} + 2 \frac{\log_3(n)}{n^{2/3}} = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right).$$

The general case

Lemma

$\frac{|J_n|}{n!}$ is strictly increasing for $n \geq 1$.

Now we are ready to proof the theorem
Proof of the combinatorial theorem

Lemma

Let $Q_n = \{\sigma \in S_n \mid \gcd(\sigma) > 1\}$. Then,

$$\frac{|Q_n|}{n!} \leq \frac{2}{\sqrt{n}} + 2 \frac{\log_3(n)}{n^{2/3}} = O\left(\frac{1}{\sqrt{n}}\right).$$

The general case

Lemma

$\frac{|J_n|}{n!}$ is strictly increasing for $n \geq 1$.

Now we are ready to proof the theorem.
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\frac{|\{\sigma \in I_n \mid \gcd(\sigma) > 1\}|}{|I_n|} = \mathcal{O}\left(\frac{1}{n^{1/6}}\right)
\]

Proof.

- Every such \(\sigma \in I_n\) is the disjoint union of a permutation in \(S_k\) and a fragmented permutation in \(J_{n-k}\), for some \(k = 0, \ldots, n\).
- Let’s distinguish between \(k\) “short” and \(k\) “long”.

\[
\frac{|\{\sigma \in I_n \mid \gcd(\sigma) > 1\}|}{|I_n|} = \frac{1}{|I_n|} \sum_{k=0}^{n} \binom{n}{k} |Q_k||J_{n-k}|
\]

\[
\leq \frac{1}{|I_n|} \sum_{k=0}^{\lfloor n^{1/3}\rfloor} \frac{n!}{(n-k)!} |J_{n-k}| + \frac{1}{|I_n|} \sum_{k=\lceil n^{1/3}\rceil}^{n} \frac{n!}{(n-k)!} \frac{M}{\sqrt{k}} |J_{n-k}|
\]
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[\frac{|\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \}|}{|I_n|} = \mathcal{O}\left(\frac{1}{n^{1/6}}\right) \]

Proof.

- Every such \(\sigma \in I_n \) is the disjoint union of a permutation in \(S_k \) and a fragmented permutation in \(J_{n-k} \), for some \(k = 0, \ldots, n \).

- Let’s distinguish between \(k \) “short” and \(k \) “long”.

\[
\frac{|\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \}|}{|I_n|} = \frac{1}{|I_n|} \sum_{k=0}^{n} \binom{n}{k} |Q_k||J_{n-k}|
\]

\[
\leq \frac{1}{|I_n|} \sum_{k=0}^{\lfloor n^{1/3} \rfloor} \frac{n!}{(n-k)!} |J_{n-k}| + \frac{1}{|I_n|} \sum_{k=\lceil n^{1/3} \rceil}^{n} \frac{n!}{(n-k)!} \frac{M}{\sqrt{k}} |J_{n-k}|
\]
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[\left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right| \frac{1}{|I_n|} = O\left(\frac{1}{n^{1/6}} \right) \]

Proof.

- Every such \(\sigma \in I_n \) is the disjoint union of a permutation in \(S_k \) and a fragmented permutation in \(J_{n-k} \), for some \(k = 0, \ldots, n \).
- Let’s distinguish between \(k \) “short” and \(k \) “long”.

\[\left| \left\{ \sigma \in I_n \mid \gcd(\sigma) > 1 \right\} \right| \frac{1}{|I_n|} = \frac{1}{|I_n|} \sum_{k=0}^{n} \binom{n}{k} Q_k |J_{n-k}| \]

\[\leq \frac{1}{|I_n|} \sum_{k=0}^{\lceil n^{1/3} \rceil} \frac{n!}{(n-k)!} |J_{n-k}| + \frac{1}{|I_n|} \sum_{k=\lceil n^{1/3} \rceil}^{n} \frac{n!}{(n-k)!} \frac{M}{\sqrt{k}} |J_{n-k}| \]
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\left| \{ \sigma \in I_n \mid \gcd(\sigma) > 1 \} \right| = O\left(\frac{1}{n^{1/6}} \right)
\]

Proof.

- Every such \(\sigma \in I_n \) is the disjoint union of a permutation in \(S_k \) and a fragmented permutation in \(J_{n-k} \), for some \(k = 0, \ldots, n \).
- Let’s distinguish between \(k \) “short” and \(k \) “long”.

\[
\left| \{ \sigma \in I_n \mid \gcd(\sigma) > 1 \} \right| = \frac{1}{|I_n|} \sum_{k=0}^{n} \binom{n}{k} |Q_k||J_{n-k}|
\]

\[
\leq \frac{1}{|I_n|} \sum_{k=0}^{\lfloor n^{1/3} \rfloor} \frac{n!}{(n-k)!} |J_{n-k}| + \frac{1}{|I_n|} \sum_{k=\lceil n^{1/3} \rceil}^{n} \frac{n!}{(n-k)!} \frac{M}{\sqrt{k}} |J_{n-k}|
\]
Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

\[
\left| \{ \sigma \in I_n \mid \gcd(\sigma) > 1 \} \right| \leq \mathcal{O}\left(\frac{1}{n^{1/6}} \right)
\]

Proof.

\begin{itemize}
 \item Every such \(\sigma \in I_n \) is the disjoint union of a permutation in \(S_k \) and a fragmented permutation in \(J_{n-k} \), for some \(k = 0, \ldots, n \).
 \item Let’s distinguish between \(k \) “short” and \(k \) “long”.
\end{itemize}

\[
\left| \{ \sigma \in I_n \mid \gcd(\sigma) > 1 \} \right| \leq \frac{1}{|I_n|} \sum_{k=0}^{\lfloor n^{1/3} \rfloor} \frac{n!}{(n-k)!} |J_{n-k}| + \frac{1}{|I_n|} \sum_{k=\lceil n^{1/3} \rceil}^{n} \frac{n!}{(n-k)!} \sqrt{k} |J_{n-k}|
\]
Proof of the combinatorial theorem

\[
\leq \frac{1}{|I_n|} n!(1 + \lfloor n^{1/3} \rfloor) \frac{|J_n|}{n!} + \frac{M}{|I_n| \cdot n^{1/6}} \sum_{k=\lfloor n^{1/3} \rfloor}^{n} \frac{n!}{(n-k)!k!} |J_{n-k}|
\]

\[
\leq (1 + \lfloor n^{1/3} \rfloor) \frac{|J_n|}{|I_n|} + \frac{M}{|I_n| \cdot n^{1/6}} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} k!|J_{n-k}|
\]

\[
\leq \mathcal{O}\left(\frac{n^{1/3}}{n^{1/2}}\right) + \mathcal{O}\left(\frac{1}{n^{1/6}}\right)
\]

\[
= \mathcal{O}\left(\frac{1}{n^{1/6}}\right). \quad \square
\]
Proof of the combinatorial theorem

\[\leq \frac{1}{|I_n|} n!(1 + \lfloor n^{1/3} \rfloor) \frac{|J_n|}{n!} + \frac{M}{|I_n| \cdot n^{1/6}} \sum_{k=\lfloor n^{1/3} \rfloor}^{n} \frac{n!}{(n-k)!} |J_{n-k}| \]

\[\leq (1 + \lfloor n^{1/3} \rfloor) \frac{|J_n|}{|I_n|} + \frac{M}{|I_n| \cdot n^{1/6}} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} |J_{n-k}| \]

\[\leq \mathcal{O}(\frac{n^{1/3}}{n^{1/2}}) + \mathcal{O}(\frac{1}{n^{1/6}}) \]

\[= \mathcal{O}(\frac{1}{n^{1/6}}). \quad \square \]
Proof of the combinatorial theorem

\[
\leq \frac{1}{|I_n|} n!(1 + \lceil n^{1/3} \rceil) \frac{|J_n|}{n!} + \frac{M}{|I_n| \cdot n^{1/6}} \sum_{k=\lceil n^{1/3} \rceil}^{n} \frac{n!}{(n-k)!} |J_{n-k}|
\]

\[
\leq (1 + \lceil n^{1/3} \rceil) \frac{|J_n|}{|I_n|} + \frac{M}{|I_n| \cdot n^{1/6}} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} k! |J_{n-k}|
\]

\[
\leq O\left(\frac{n^{1/3}}{n^{1/2}}\right) + O\left(\frac{1}{n^{1/6}}\right)
\]

\[
= O\left(\frac{1}{n^{1/6}}\right). \quad \Box
\]
Proof of the combinatorial theorem

\[\leq \frac{1}{|I_n|} n! (1 + \lfloor n^{1/3} \rfloor) \frac{|J_n|}{n!} + \frac{M}{|I_n| \cdot n^{1/6}} \sum_{k=\lfloor n^{1/3} \rfloor}^{n} \frac{n!}{(n-k)!} |J_{n-k}| \]

\[\leq (1 + \lfloor n^{1/3} \rfloor) \frac{|J_n|}{|I_n|} + \frac{M}{|I_n| \cdot n^{1/6}} \sum_{k=0}^{n} \frac{n!}{(n-k)! k!} |J_{n-k}| \]

\[\leq O\left(\frac{n^{1/3}}{n^{1/2}} \right) + O\left(\frac{1}{n^{1/6}} \right) \]

\[= O\left(\frac{1}{n^{1/6}} \right). \quad \square \]
Thanks