Thompson’s group \mathcal{T} as automorphism group of a cellular complex

Ariadna Fossas
(joint work with Maxime Nguyen)

Université Joseph Fourier
Universitat Politècnica de Catalunya

GAGTA 5.
Manresa, 14 July 2011
Tits (1970)

Most subgroups of automorphism groups of trees generated by vertex stabilizers are simple.

Haglund and Paulin (1998)

Most automorphism groups of negatively curved polyhedral complexes are virtually simple.

We are going to be interested in the reciprocal situation:

Given a simple group G (in our case Thompson’s group \mathcal{T}), find an interesting cellular complex C such that its automorphism group is ‘essentially’ the group G.

Ariadna Fossas

\mathcal{T} as automorphism group
Introduction

Motivation

Tits (1970)
Most subgroups of automorphism groups of trees generated by vertex stabilizers are simple.

Haglund and Paulin (1998)
Most automorphism groups of negatively curved polyhedral complexes are virtually simple.

We are going to be interested in the reciprocal situation:
Given a simple group G (in our case Thompson’s group T), find an interesting cellular complex C such that its automorphism group is ‘essentially’ the group G.

Ariadna Fossas $\ T$ as automorphism group
Introduction

Motivation

Tits (1970)

Most subgroups of automorphism groups of trees generated by vertex stabilizers are simple.

Haglund and Paulin (1998)

Most automorphism groups of negatively curved polyhedral complexes are virtually simple.

We are going to be interested in the reciprocal situation:

Given a simple group G (in our case Thompson’s group \mathcal{T}), find an interesting cellular complex C such that its automorphism group is ’essentially’ the group G.
Goal of the talk

What do we already know about \mathcal{T} acting on complexes?

Farley, 2005

\mathcal{F}, \mathcal{T} and \mathcal{V} act properly and isometrically on CAT(0) cubical complexes.

F.-Nguyen, 2011

There exists a cellular complex \mathcal{C} such that $\Aut_+(\mathcal{C}) \simeq \mathcal{T}$, where $\Aut_+ = \text{subgroup of orientation-preserving automorphisms}$.

Where does the complex \mathcal{C} come from?

There exists a planar surface Σ of infinite type which has Thompson’s group \mathcal{T} as asymptotic mapping class group.
Goal of the talk

What do we already know about \mathcal{T} acting on complexes?

Farley, 2005

\mathcal{F}, \mathcal{T} and \mathcal{V} act properly and isometrically on CAT(0) cubical complexes.

F.-Nguyen, 2011

There exists a cellular complex \mathcal{C} such that $\text{Aut}_+(\mathcal{C}) \simeq \mathcal{T}$, where $\text{Aut}_+ =$ subgroup of orientation-preserving automorphisms.

Where does the complex \mathcal{C} come from?

Funar-Kapoudjian, 2004

There exists a planar surface Σ of infinite type which has Thompson’s group \mathcal{T} as asymptotic mapping class group.
Introduction

Goal of the talk

What do we already know about \mathcal{T} acting on complexes?

Farley, 2005

\mathcal{F}, \mathcal{T} and \mathcal{V} act properly and isometrically on CAT(0) cubical complexes.

F.-Nguyen, 2011

There exists a cellular complex \mathcal{C} such that $\text{Aut}_+(\mathcal{C}) \cong \mathcal{T}$, where $\text{Aut}_+ = \text{subgroup of orientation-preserving automorphisms}$.

Where does the complex \mathcal{C} come from?

There exists a planar surface Σ of infinite type which has Thompson’s group \mathcal{T} as asymptotic mapping class group.
Another viewpoint

- $\Sigma_{g,n}$: compact, connected, orientable surface of genus g with n marked points.
- $\text{MCG}^*(\Sigma_{g,n})$: extended mapping class group of $\Sigma_{g,n}$.
- C_c: curve complex of $\Sigma_{g,n}$.
- C_p: pants complex of $\Sigma_{g,n}$.

Ivanov-Korkmaz, 1997

\[\text{MCG}^*(\Sigma_{g,n}) \cong \text{Aut}(C_c), \text{ unless } g = 0 \text{ and } n \leq 4, \text{ or } g = 1 \text{ and } n \leq 2, \text{ or } g = 2 \text{ and } n = 0. \]

Margalit, 2004

\[\text{MCG}^*(\Sigma_{g,n}) \cong \text{Aut}(C_p), \text{ unless } g = 0 \text{ and } n \leq 4, \text{ or } g = 1 \text{ and } n \leq 2, \text{ or } g = 2 \text{ and } n = 0. \]
Another viewpoint

- $\Sigma_{g,n}$: compact, connected, orientable surface of genus g with n marked points.
- $\text{MCG}^*(\Sigma_{g,n})$: extended mapping class group of $\Sigma_{g,n}$.
- C_c: curve complex of $\Sigma_{g,n}$.
- C_p: pants complex of $\Sigma_{g,n}$.

Ivanov-Korkmaz, 1997

$\text{MCG}^*(\Sigma_{g,n}) \cong \text{Aut}(C_c)$, unless $g = 0$ and $n \leq 4$, or $g = 1$ and $n \leq 2$, or $g = 2$ and $n = 0$.

Margalit, 2004

$\text{MCG}^*(\Sigma_{g,n}) \cong \text{Aut}(C_p)$, unless $g = 0$ and $n \leq 4$, or $g = 1$ and $n \leq 2$, or $g = 2$ and $n = 0$.
Another viewpoint

- $\Sigma_{g,n}$: compact, connected, orientable surface of genus g with n marked points.
- $\text{MCG}^*(\Sigma_{g,n})$: extended mapping class group of $\Sigma_{g,n}$.
- C_c: curve complex of $\Sigma_{g,n}$.
- C_p: pants complex of $\Sigma_{g,n}$.

Ivanov-Korkmaz, 1997

$\text{MCG}^*(\Sigma_{g,n}) \simeq \text{Aut}(C_c)$, unless $g = 0$ and $n \leq 4$, or $g = 1$ and $n \leq 2$, or $g = 2$ and $n = 0$.

Margalit, 2004

$\text{MCG}^*(\Sigma_{g,n}) \simeq \text{Aut}(C_p)$, unless $g = 0$ and $n \leq 4$, or $g = 1$ and $n \leq 2$, or $g = 2$ and $n = 0$.
The surface Σ

The triangulation E of \mathbb{D}^2 and its dual tree
The surface Σ and its hexagonal tessellation
Introduction

Surface Σ

AMCG

Complex \mathbb{C}

Aut(\mathbb{C})

The surface Σ

Dyadic rational numbers at the closure of $\partial \Sigma$
The asymptotic mapping class group of Σ

Separating arcs: example
The asymptotic mapping class group of Σ

Asymptotically rigid homeomorphism: example
The asymptotic mapping class group of Σ

Homeo_{a}(\Sigma): asymptotically rigid homeomorphisms of Σ.

Definition

AMCG(\Sigma): quotient of Homeo_{a}(\Sigma) by the group of isotopies of Σ.

Proposition

AMCG(\Sigma) is isomorphic to Thompson’s group \mathcal{T}.

Definition

Thompson’s group \mathcal{T} is the set of orientation preserving piecewise linear homeomorphisms of the circle $S^1 = [0, 1]/\sim$ such that:

1. the points of non-differentiability are dyadic rational numbers,
2. the derivatives (where defined) are powers of 2, and
3. the set of dyadic rational numbers is fixed.
The asymptotic mapping class group of Σ

Definition

$\text{AMCG}(\Sigma)$: quotient of $\text{Homeo}_a(\Sigma)$ by the group of isotopies of Σ.

Proposition

$\text{AMCG}(\Sigma)$ is isomorphic to Thompson’s group \mathcal{T}.

Definition

Thompson’s group \mathcal{T} is the set of orientation preserving piecewise linear homeomorphisms of the circle $S^1 = [0, 1]/_0^1$ such that:

1. the points of non-differentiability are dyadic rational numbers,
2. the derivatives (where defined) are powers of 2, and
3. the set of dyadic rational numbers is fixed.
The asymptotic mapping class group of Σ

The asymptotic mapping class group

$\text{Homeo}_a(\Sigma)$: asymptotically rigid homeomorphisms of Σ.

Definition

$\text{AMCG}(\Sigma)$: quotient of $\text{Homeo}_a(\Sigma)$ by the group of isotopies of Σ.

Proposition

$\text{AMCG}(\Sigma)$ is isomorphic to Thompson’s group \mathcal{T}.

Definition

Thompson’s group \mathcal{T} is the set of orientation preserving piecewise linear homeomorphisms of the circle $S^1 = [0, 1]/_{0 \sim 1}$ such that:

1. the points of non-differentiability are dyadic rational numbers,
2. the derivatives (where defined) are powers of 2, and
3. the set of dyadic rational numbers is fixed.
The asymptotic mapping class group of Σ

Idea of the proof
The asymptotic pants complex C: definition

Vertices of C
The asymptotic pants complex C: definition

Edges of C
The asymptotic pants complex \mathcal{C}: definition

Edges of \mathcal{C}
The asymptotic pants complex C: definition

Squared 2-cells of C
Pentagonal 2-cells of C
The asymptotic pants complex C: definition

Some properties of C

1. C is connected and simply connected.

2. C is locally infinite.
 \{neighbours of the vertex $v}\leftrightarrow\{arcs of the triangulation $v\}.

3. C is not Gromov hyperbolic.
The asymptotic pants complex C: definition

Some properties of C

1. C is connected and simply connected.

2. C is locally infinite.
 \[
 \{\text{neighbours of the vertex } v\} \leftrightarrow \{\text{arcs of the triangulation } v\}.
 \]

3. C is not Gromov hyperbolic.
Some properties of C

1. C is connected and simply connected.

2. C is locally infinite.
 \[\{ \text{neighbours of the vertex } v \} \leftrightarrow \{ \text{arcs of the triangulation } v \}. \]

3. C is not Gromov hyperbolic.
The action of \mathcal{T} on C

\mathcal{T} acts on C

Proposition

\mathcal{T} acts transitively on C by automorphisms. Furthermore, the map $\Psi : \mathcal{T} \rightarrow \text{Aut}(C)$ is injective.

Action:

![Diagram showing the action of \mathcal{T} on C]
The action of \mathcal{T} on C

Transitivity of the action

Ariadna Fossas

\mathcal{T} as automorphism group
The action of T on C

Construction of $f \in T$ **such that** $f \cdot E = v$.

![Diagram with trivalent graphs and curves](image)
The action of \mathcal{T} on C

Construction of $f \in \mathcal{T}$ such that $f \cdot E = v$.

Ariadna Fossas

\mathcal{T} as automorphism group
The action of \mathcal{T} on C

Construction of $f \in \mathcal{T}$ such that $f \cdot E = v$.

Ariadna Fossas

\mathcal{T} as automorphism group
The action of \mathcal{T} on \mathcal{C}

Construction of $f \in \mathcal{T}$ such that $f \cdot E = v$.
The action of T on C

Construction of $f \in T$ such that $f \cdot E = v$.
Construction of $f \in \mathcal{T}$ such that $f \cdot E = v$.
The action of \mathcal{T} on C

$f \in \mathcal{T}$ with $f \cdot E = \nu$.

\[f \in \mathcal{T} \text{ with } f \cdot E = \nu. \]
Link complex

Definition

Let $v \in C^0$. The **link complex** $\mathcal{L}^2(v)$ of v is the simplicial complex

- **Vertices**: Neighbours of v in C.
- **Edges**: u and w are joined if u, v, w lie in a pentagonal 2-cell.
- **2-simplex**: Triangles in the 1-skeleton $\mathcal{L}^1(v)$.
Link complex

Automorphisms of \mathcal{C} induce link isomorphisms

Lemma

Let $v \in \mathcal{C}^0$. Then, every automorphism $\varphi \in \text{Aut}(\mathcal{C})$ induces an isomorphism $\varphi_{*,v} : \mathcal{L}^2(v) \to \mathcal{L}^2(w)$, where $w = \phi(v)$.

Question 1: what about the reciprocal?

Given v and w be vertices of \mathcal{C} and $i : \mathcal{L}^2(v) \to \mathcal{L}^2(w)$ isomorphism, can we always find $\varphi \in \text{Aut}(\mathcal{C})$ such that $\varphi_{*,v} = i$?

NO.

Question 2: why not?

Which is the main obstruction to the existence of this automorphism?
Automorphisms of \mathcal{C} induce link isomorphisms

Lemma

Let $v \in \mathcal{C}^0$. Then, every automorphism $\varphi \in \text{Aut}(\mathcal{C})$ induces an isomorphism $\varphi_{*,v} : \mathcal{L}^2(v) \to \mathcal{L}^2(w)$, where $w = \phi(v)$.

Question 1: what about the reciprocal?

Given v and w be vertices of \mathcal{C} and $i : \mathcal{L}^2(v) \to \mathcal{L}^2(w)$ isomorphism, can we always find $\varphi \in \text{Aut}(\mathcal{C})$ such that $\varphi_{*,v} = i$?

NO.

Question 2: why not?

Which is the main obstruction to the existence of this automorphism?
Automorphisms of \mathcal{C} induce link isomorphisms

Lemma

Let $v \in \mathcal{C}^0$. Then, every automorphism $\varphi \in \text{Aut}(\mathcal{C})$ induces an isomorphism $\varphi_{\ast,v} : \mathcal{L}^2(v) \to \mathcal{L}^2(w)$, where $w = \phi(v)$.

Question 1: what about the reciprocal?

Given v and w be vertices of \mathcal{C} and $i : \mathcal{L}^2(v) \to \mathcal{L}^2(w)$ isomorphism, can we always find $\varphi \in \text{Aut}(\mathcal{C})$ such that $\varphi_{\ast,v} = i$?

NO.

Question 2: why not?

Which is the main obstruction to the existence of this automorphism?
Main obstruction to extension of link isomorphisms

Proposition

Let $i : \mathcal{L}^2(v) \rightarrow \mathcal{L}^2(w)$ be a link isomorphism such that:
- it is orientation reversing on $\Delta_1 = (u_0, u_1, u_2)$, and
- it is orientation preserving on $\Delta_2 = (u_0, u_3, u_4)$.

Then, there does not exist $\varphi \in \text{Aut}(C)$ with $\varphi_{*,v} = i$.
Example of non-extensible link isomorphism
Lemma

Let \(v, w \in C^0 \), and \(i : L^2(v) \to L^2(w) \) \(v \)-orientation preserving isomorphism. Then, there exists a unique automorphism \(\varphi_i \in \text{Aut}(C) \) such that \(\varphi_{*,v} = i \).

Furthermore, \(\varphi_i \) is an element of \(\mathcal{T} \).

Remark

For all \(\varphi \in \mathcal{T} \leq \text{Aut}(C) \) and for all \(v \) vertex of \(C \), \(\varphi_{*,v} \) is \(v \)-orientation preserving.

Lemma

Let \(i_R : L^2 E \to L^2 E \) be the orientation reversing isomorphism obtained by the symmetry of axis \(I^1_0 \). Then, there exists a unique automorphism \(\varphi_R \in \text{Aut}(C) \) such that \(\varphi_{R*,E} = i_R \).
Extension of link isomorphisms

Lemma

Let $v, w \in \mathcal{C}^0$, and $i : \mathcal{L}^2(v) \to \mathcal{L}^2(w)$ v-orientation preserving isomorphism. Then, there exists a unique automorphism $\varphi_i \in \text{Aut}(\mathcal{C})$ such that $\varphi_{*,v} = i$.

Furthermore, φ_i is an element of \mathcal{T}.

Remark

For all $\varphi \in \mathcal{T} \leq \text{Aut}(\mathcal{C})$ and for all v vertex of \mathcal{C}, $\varphi_{*,v}$ is v-orientation preserving.

Lemma

Let $i_R : \mathcal{L}^2E \to \mathcal{L}^2E$ be the orientation reversing isomorphism obtained by the symmetry of axis I^1_0. Then, there exists a unique automorphism $\varphi_R \in \text{Aut}(\mathcal{C})$ such that $\varphi_{R*,E} = i_R$.
Extension of link isomorphisms

Lemma

Let $v, w \in C^0$, and $i : \mathcal{L}^2(v) \to \mathcal{L}^2(w)$ v-orientation preserving isomorphism. Then, there exists a unique automorphism $\varphi_i \in \text{Aut}(C)$ such that $\varphi_*,v = i$.

Furthermore, φ_i is an element of \mathcal{T}.

Remark

For all $\varphi \in \mathcal{T} \leq \text{Aut}(C)$ and for all v vertex of C, φ_*,v is v-orientation preserving.

Lemma

Let $i_R : \mathcal{L}^2 E \to \mathcal{L}^2 E$ be the orientation reversing isomorphism obtained by the symmetry of axis I^1_0. Then, there exists a unique automorphism $\varphi_R \in \text{Aut}(C)$ such that $\varphi_{R*,E} = i_R$.

Ariadna Fossas

\mathcal{T} as automorphism group
Introduction

Surface Σ

AMCG

Complex C

$\text{Aut}(C)$

Link isomorphisms and extensions

Structure of $\text{Aut}(C)$

Theorem (F.-Nguyen, 2011)

$\text{Aut}(C) \cong T \rtimes \mathbb{Z}/2\mathbb{Z}$.

Proof. Consider

$$\Psi : \varphi \mapsto \begin{cases}
0, & \text{if } \varphi \text{ is orientation preserving} \\
1, & \text{if } \varphi \text{ is orientation reversing.}
\end{cases}$$

$\ker(\Psi) = T$.

Section: $1 \in \mathbb{Z}/2\mathbb{Z} \rightarrow \varphi_R$.

Thus, we have

$$1 \rightarrow T \rightarrow \text{Aut}(C) \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 1,$$

and it splits.
Structure of $\text{Aut}(C)$

Theorem (F.-Nguyen, 2011)

$$\text{Aut}(C) \cong \mathcal{T} \rtimes \mathbb{Z}/2\mathbb{Z}.$$

Proof. Consider

$$\Psi : \varphi \mapsto \begin{cases}
0, & \text{if } \varphi \text{ is orientation preserving} \\
1, & \text{if } \varphi \text{ is orientation reversing}.
\end{cases}$$

$$\ker(\Psi) = \mathcal{T}.$$

Section: $1 \in \mathbb{Z}/2\mathbb{Z} \rightarrow \varphi_R.$

Thus, we have

$$1 \rightarrow \mathcal{T} \rightarrow \text{Aut}(C) \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 1,$$

and it splits.
Structure of $\text{Aut}(C)$

Theorem (F.-Nguyen, 2011)

$$\text{Aut}(C) \cong \mathcal{T} \rtimes \mathbb{Z}/2\mathbb{Z}.$$

Proof. Consider

$$\Psi : \varphi \mapsto \begin{cases}
0, & \text{if } \varphi \text{ is orientation preserving} \\
1, & \text{if } \varphi \text{ is orientation reversing.}
\end{cases}$$

$\ker(\Psi) = \mathcal{T}.$

Section: $1 \in \mathbb{Z}/2\mathbb{Z} \rightarrow \varphi_R.$

Thus, we have

$$1 \rightarrow \mathcal{T} \rightarrow \text{Aut}(C) \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 1,$$

and it splits.
Link isomorphisms and extensions

Structure of Aut(C)

Theorem (F.-Nguyen, 2011)

$$\text{Aut}(C) \simeq \mathcal{T} \rtimes \mathbb{Z}/2\mathbb{Z}.$$

Proof. Consider

$$\Psi : \varphi \mapsto \begin{cases} 0, & \text{if } \varphi \text{ is orientation preserving} \\ 1, & \text{if } \varphi \text{ is orientation reversing.} \end{cases}$$

$$\ker(\Psi) = \mathcal{T}.$$

Section: $1 \in \mathbb{Z}/2\mathbb{Z} \longrightarrow \varphi_R.$

Thus, we have

$$1 \longrightarrow \mathcal{T} \longrightarrow \text{Aut}(C) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 1,$$

and it splits.
Structure of $\text{Aut}(C)$

Theorem (F.-Nguyen, 2011)

$$\text{Aut}(C) \cong \mathcal{T} \rtimes \mathbb{Z}/2\mathbb{Z}.$$

Proof. Consider

$$\Psi : \varphi \mapsto \begin{cases} 0, & \text{if } \varphi \text{ is orientation preserving} \\ 1, & \text{if } \varphi \text{ is orientation reversing.} \end{cases}$$

$\ker(\Psi) = \mathcal{T}.$

Section: $1 \in \mathbb{Z}/2\mathbb{Z} \longrightarrow \varphi_R.$

Thus, we have

$$1 \longrightarrow \mathcal{T} \longrightarrow \text{Aut}(C) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 1,$$

and it splits.
Thanks for your attention.